

How we deal with forces in 2 dimensions.

Vectors

- Forces are vector quantities - they have a magnitude (N) and a direction (${ }^{\circ}$ from).
- As we saw when examining work the direction of the force makes a big difference to the outcome.

Vectors

- Vector quantities can only be added by vector means.
- 7 N north plus 7 N east does not make 14 N north east
- So how do we add them?

Vectors

Where will the ball go?
You can probably intuitively tell what would happen but can we use mathematics?

- Rule one: add vectors head to tail.

Either
way will
do

Vectors

- Rule 2: Complete the triangle

The hypotenuse is the resultant combination of the two vectors.

Vectors

- Number crunching.
- The vectors could be drawn to scale with the angles drawn accurately and then the hypotenuse and its angle to one of the other vectors measured.

Vectors

Or because your teacher cleverly chose vectors that were at right angles Pythagoras' Theorem could be used along with trigonometry.

Vectors

- Resolving a vector into components.
- Often we only need to consider the force vector in one direction.

What force acts on the ball to the right?

Vectors

- We could draw a scale diagram and measure

8.7 cm

The ball experiences
a force of 8.7 N to
the right.

Vectors

- Or we could use trigonometry (they're on the card I gave you at the start of the year).

$$
\begin{aligned}
& \cos \theta=\frac{a d j}{h y p} \quad \cos 30=\frac{a d j}{10} \\
& a d j=10 \times \cos 30 \\
& \quad \text { adj }=8.66
\end{aligned}
$$

The ball experiences a force of 8.66 N to the right

