Data for Sydney Region shows that 28 \% of crashes are from a REAR END.

More then half of these result in
injury - 54\%.

Most of these crashes could Have been avoided had the 3 SECOND GAP been maintained!

To avoid Rear End crashes, please take a couple of minutes to read this important road safety information:

SIOPPING DISTANCE

...you see the brake lights of the car in front of you just ca me on... You will hit the brake to slow down your car...
BUT, there is a small time delay before you really do that - your reaction time.

During that period of time, your car is still moving at the sa me speed out of your control.

> the faster you are going, the further you will travel during this time

The total stopping distance is made up of four components:

During these periods of time the vehicle will pass through...

```
= REACTION DISTANCE + BRAKING DISTANCE
```


REACION TIME

How long the drivertakes to see the hazard, a nd the brain takes to recognise it is a hazard requiring an immediate reaction

Can be aslong as 0.25-0.5 seconds

HUMAN REACTION TIME

How long the body takes to move the foot from the accelerator to the brake pedal

Can vary from 0.25-0.75
seconds

VEHICLE REACTION TIME

After the driverhasacted time is needed for vehicle to react. This depends on the brake pedal free play, hydraulic properties of the brake fluid and working order of the braking system
Approximate value is 0.2 seconds

Total reaction time can be as little as 0.75 seconds, but more realistically, the reaction time that is used in calculations is $1-1.5$ seconds. It is important to note that reaction time is a very complic ated topic affected by a large number of variables.
Human factors can be affected by tiredness, alc ohol, fatigue, concentration levels etc. A perception and reaction time of 3-4 seconds is possible.

Note that 4 sec ondsat $100 \mathrm{~km} / \mathrm{h}$ means the cartravels 110 meters before the brakes are applied.

The biggest factor in stopping distances is the speed at which a dinver reacts to seeing a hazard - DRIVER REACTION TIME

Response speed depends on several factors thus there is no single, univereal reaction time value. Factors that affect reaction time are:

EXPECTATION - greatly affected by whether the driver is alert to the need to brake
URGENCY - people brake faster when there is great urgency
MENTALIOAD - the brake time becomes longer when there are number of factors that compete for the driver'sattention (eg. in cardisplays, mobile phones, pear...)

PSYCHOLOGICAL REFRACTORY PERNOD - new responses a re made more slowly than if there had been no previous beha viour

AGE- older people respond more slower than younger people. However, older drivers generally compensate for slower reaction times with reduced speeds

NATURE OF THE SGNAL- brake light, obstacle in the path, motion...It's much more diffic ult to judge motion towards or a way from you than something which cuts a cross your path

VISIBIIIY - Reaction time inc rea ses in as visibility decreases
RESPONSE COMPIEXIY - more c omplex muscular resp onses ta ke longer
TIME OF THE DAY - light level has little effect on reaction time, rather it is c ontrast that matters

BRAKNG TIME \& DISTANCE

Depends on factors such as:

- The type of braking system,
- Brake pad material,
- Brake a lignment,
- Tyre pressure, tread a nd grip,
- Vehicle weight,
- Suspension system,
- The coefficient of fric tion of the road surface,
- Wind speed,
- Slope of road,
- Surface smoothness,
- The braking technique a pplied by the driver
- Weatherconditions

DRY SURFACE

A child runs onto the road 45 m ahead of you while you are travelling in $60 \mathrm{~km} / \mathrm{h}$ zone. You brake hard. WILL YOU STOP IN TIME ?

NOTE: Road is dry, you have a modern vehicle with good brakes and tyres. Reaction time used in calculations is 1.5 seconds.

WETSURFACE

A child runs onto the road 45 m ahead of you while you are travelling in $60 \mathrm{~km} / \mathrm{h}$ zone. You brake hard. WILL YOU STOP IN TIME ?

NOTE: Road is wet, you have a modern vehicle with good brakes and tyres. Reaction time used in calculations is 1.5 seconds.

Comparison wetand dry surface

WHATEISE CAN HAPPEN ON A WETROAD THATAFFECTSSIOPPING DISTANCE?

FIRSTRAIN

The carneedstraction to move or to stop. Your tyres will achieve the best traction on clean and dry road. But road surface can be contaminated by dirt and spilled fluidsfrom vehicles. The first rain, especially after a long dry period, can be very dangerous as dirt and water form very slippery film and tyres loose traction, a son icy surfaces.

After rea sona ble time of ra in the dirt and slippery film will be washed off road surface.

The other danger on the wet road is:

AQUAPLANING This is a phenomenon in which the tyres progressively loose direct contact with the road surface due to the la yer of water that is wedged between the wheel and road owe to the vehic le's speed.

The function of the tyre's tread is to remove water between the tyre a nd the road surface to ensure better traction. Increasing speed on a wet surface, water will be dragged by the tyre as a wedge between the tyre and road surface. That pressure builds up on tyre until the moment when the pressure is high enough to separate the tyre from the road.

Exa mple of high demand on tyres: At a speed of $80 \mathrm{~km} / \mathrm{h}$ tyre must displace up to 25 litres of water per sec ond.

To a void a quapla ning, slow down in rain.
Allow longer stopping dista nces a nd drive as smoothly as possible.

Modem vehicle with good brakes and tyres, on a dry road doing $50 \mathrm{~km} / \mathrm{h}$, reaction time is 1.5 sec :
ao speed reduction

With the advent of better brakes, vehicle stopping distances have been reduced somewhat over the years but it should be remembered that, no matter how good the brakesand tyres are, the laws of physic s don't change.

REMEMBER

DOUBUNG YOUR SPEED INCREASES BRAKING DISTANCE BY FOUR TIMES

Most frighteningly, Austra lian research has shown that the very people we expect to have the fastest reactions - young drivers - are partic ula rly prone to effectively 'freeze up', at the sight of an unexpected hazard ahead, and their reaction time can therefore exceed two seconds.
so, sto pping dista nc es vary a c c ording to
driver c ond itions, road a nd weather c ond itions
and vehicle conditions...

But drivers need to recognise that:

No matter how good a driver you think you are and how evergood yourcaris,
the difference between driving at the speed limit a nd a few km/h over the limit will result in a much longer stopping distance.

That could result in fatal consequences.

To avoid rear end crashes you should whenever possible maintain a

3 SECONDSGAP

between your vehicle and the vehicle in front of you.

WHY a "3 sec ond gap"

Distances should be adjusted to the speed you are driving - shorter for lower speed and longer for a higher speed.

An old safety recommendation that suggested counting car lengths between vehic les at certa in speeds was very inac curate due to The ina bility to judge carlengths accurately enough .

3 SECOND GAP

Simply selectstationary point, when the vehicle in front of you passes that point start c ounting "one thousand and one, one thousand and two..."

Guiding via stationary object (never a moving one) can be any thing on or near the road such as sign posts, light poles, pa inted markings, reflective lights, pot holes orpatches, shadows, parked cars etc

If you reach the stationary point before you count 'one thousand and three' you are too close (on a dry road). Sow down and drop further back.

As soon as the surface gets wet, or even just damp, three sec onds bec omes inadequate ! Use at least a 4-second gap on a wet road and $\mathbf{1 0}$ sec onds on ic y roads.

When the road is icy, covered with compacted snow, or fuel has been spilled the 'braking distance' for your vehicle can be as much asten times further than fordry roads. Remember that the 'first rain' is as dangerous asice on the road!

If other driver cuts in front of you, restart your count on their vehicle and drop back once more.

It may test your patience, but it's better than being injured because you were simply driving too close and couldn't stop.

A US experiment has shown that driving from Philadelphia to New York City, a 100 mile trip, using a 2 -sec ond rule added a total of two minutes to the drive time.

If the 3 -sec ond rule is used, accident avoidance is inc reased
by 70 percent over the 2 - sec ond rule.

"The driverahead stopped suddenly"...

Hitting the car in front simply means you weren't paying enough attention to the weather or the road surface conditions and either you didn't leave a big enough gap between the vehicles or you were driving too fast for those conditions.

BE PREPARED FOR THESE THINGS.

What if you have been tailgated?

Keep in mind that when someone is tailgating you , you have to add theirfollowing distance to yours, so if you have to react you've got the extra time and space to slow or stop without the ta ilga ter hitting you.
just get them "off your back" , pull over and let them pass!

DRIVE SMARI!

S^FEDRIVINGTIPS

Watch a couple of cars ahead of you, notjust the one rightin front

Scan the road for possible hazards
Anticipate others reaction and be ready to react
Maintain at leasta 3 sec gap (appropriate for the conditions)

AUBURN \& PARRAMATTA

CITY COUNCILS

ENCOURAGE SAFE DRIVING!

